The Open Monophonic Number of a Graph

A.P. Santhakumaran, M. Mahendran

Abstract

For a connected graph G of order n, a subset S of vertices of G is a monophonic set of G if each vertex v in G lies on a $x-y$ monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is defined as the monophonic number of G, denoted by $m(G)$. A monophonic set of cardinality $m(G)$ is called a m-set of G. A set S of vertices of a connected graph G is an open monophonic set of G if for each vertex v in G, either v is an extreme vertex of G and $v \in S$, or v is an internal vertex of a $x-y$ monophonic path for some $x, y \in S$. An open monophonic set of minimum cardinality is a minimum open monophonic set and this cardinality is the open monophonic number, om(G). The open monophonic number of certain standard graphs are determined. For positive integers r, d and $I \geq 2$ with $r \leq d \leq 2 r$, there exists a connected graph of radius r, diameter d and open monophonic number l. It is proved that for a tree T of order n and diameter d, om $(T)=n-d+1$ if and only if T is a caterpillar. Also for integers n, d and k with $2 \leq d<n, 2 \leq k<n$ and $n-d-k+1 \geq 0$, there exists a graph G of order n, diameter d and open monophonic number k. It is proved that $o m(G)-2 \leq o m\left(G^{\prime}\right) \leq o m(G)+1$, where G^{\prime} is the graph obtained from G by adding a pendant edge to G. Further, it is proved that if om $\left(G^{\prime}\right)=o m(G)+1$, then v does not belong to any minimum open monophonic set of G, where G^{\prime} is a graph obtained from G by adding a pendant edge $u v$ with v a vertex of G and u not a vertex of G.

Keywords-Distance, geodesic, geodetic number, open geodetic number, monophonic number, open monophonic number.

1 Introduction

BY a graph $G=(V, E)$ we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m, respectively. For basic graph theoretic terminology we refer to Harary [4]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. It is known that this distance is a metric on the vertex set $V(G)$. For any vertex v of G, the eccentricity $e(v)$ of v is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, rad G and the maximum eccentricity is its diameter, diam G of G. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices which are adjacent with v. The vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete. For a cutvertex v in a connected graph G and a component H of $G-v$, the subgraph H and the vertex v together with all edges joining v and $V(H)$ is called a branch of G at v. A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number $g(G)$ of G is the cardinality of a minimum geodetic set. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P and x is called an internal vertex of P if $x \neq$ u, v. A set S of vertices of a connected graph G is an open geodetic set of G if for each vertex v in G, either v is an extreme vertex of G and $v \in S$, or v is an internal vertex of a $x-y$ geodesic for some $x, y \in S$. An open geodetic set of minimum cardinality is a minimum open geodetic set and this cardinality is the open geodetic number $\operatorname{og}(G)$. It is clear that every open geodetic set is a geodetic set so that $g(G) \leq o g(G)$. The geodetic number of a graph was introduced and studied in [1,2]. The open geodetic number of a graph was introduced and studied in $[3,5,7]$ in the name open geodomination in graphs. A chord of a path $u_{1}, u_{2}, \ldots, u_{\mathrm{n}}$ in G is an edge $u_{i} u_{j}$ with $j \geq i+2$. For two vertices u and v in a connected graph G, a $u-v$ path is called a monophonic path if it contains no chords. A monophonic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a monophonic path joining some pair of vertices in S. The monophonic number $m(G)$ of G is the cardinality of a minimum monophonic set.

Fig. 1.1: A graph with monophonic number 3.
For the graph G given in Fig. 1.1, the set $S=\left\{v_{1}, v_{3}, v_{6}\right\}$ is a minimum monophonic set so that $m(G)=3$.

Since every extreme vertex v is either an initial vertex or a terminal vertex of a path containing v, it follows that every monophonic set S of graph G contains all its extreme vertices. Hence we have the following theorem.
Theorem 1.1 Every extreme vertex of a connected graph G belongs to each monophonic set of G. In particular, if the set S of all extreme vertices of G is a monophonic set of G, then S is the unique minimum monophonic set of G.

2 Open Monophonic Number Of a Graph

2.1 Definition

A set S of vertices in a connected graph G is an open monophonic set if for each vertex v in G, either v is an extreme vertex of G and $v \in S$, or v is an internal vertex of an $x-y$ monophonic path for some $x, y \in S$. An open monophonic set of minimum cardinality is a minimum open monophonic set and this cardinality is the open monophonic number om (G) of G. An open monophonic set of cardinality $\operatorname{om}(G)$ is called an om-set of G.

G
Fig. 1: A graph with open monophonic number 4.

For the graph G is Fig. 1, the set $S=\left\{v_{1}, v_{3}\right\}$ is a monophonic set of G so that $m(G)=2$. It is easily checked that neither a $2-$ element subset nor a 3-element subset of vertices is an open monophonic set of G. Since $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is an open monophonic set of G, it follows that S is a minimum open monophonic set and so $o m(G)=4$. Also $S_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{7}\right\}, S_{2}=\left\{v_{1}\right.$, $\left.v_{3}, v_{4}, v_{5}\right\}, S_{3}=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$ are minimum open monophonic sets. Thus, there can be more than one minimum open monophonic set for a connected graph. This example also shows that the monophonic number and open monophonic number of a graph are different.

It clear that an open monophonic set needs at least two vertices and so $\operatorname{om}(G) \geq 2$ Also the set of all vertices of G is an open monophonic set of G so that $\operatorname{om}(G) \leq n$. Hence we have the following theorem.
Theorem 2.2 For any connected graph G of order $n, 2 \leq o m(G) \leq n$.
Remark 2.3 We observe that the bounds in Theorem 2.2 are sharp. For the complete graph $K_{n}(n \geq 2), o m\left(K_{n}\right)=n$. The set of two end vertices of a path $P_{n}(n \geq 2)$ is its unique minimum open monophonic set so that $\operatorname{om}\left(P_{n}\right)=2$. Thus the complete graph K_{n} has largest possible open monophonic number n and that non-trivial paths have the smallest open monophonic number 2.

We observe that every open monophonic set of a graph G is a monophonic set so that $m(G) \leq o m(G)$. This combined with Theorem 2.2 gives the following result.
Theorem 2.4 For a connected graph $G, 2 \leq m(G) \leq o m(G) \leq n$.
Since every open monophonic set of a graph G is also a monophonic set of a graph G, the next theorem follows from Theorem 1.1.
Theorem 2.5 Every open monophonic set of a graph G contains its extreme vertices. Also, if the set S of all extreme vertices of G is an open monophonic set, then S is the unique minimum open monophonic set of G.
Corollary 2.6 For the complete graph $K_{n}(n \geq 2)$, om $\left(K_{n}\right)=n$.
Remark 2.7 If $\operatorname{om}(G)=n$ for a connected graph G of order n, then it need not be true that G is complete. It is clear that for the cycle $G=C_{4}, \operatorname{om}(G)=4$.

Now, Corollary 2.6 leads us to ask the question whether $m(G)=n$ for a connected graph G of order n implies G $=K_{n}$. If G is not a complete graph, then there exist two vertices x and y such that x and y are not adjacent. Hence there is a $x-y$ geodesic P of length at least 2 so that P is also a $x-y$ monophonic path of length at least 2 . Let v be an internal vertex of the $x-y$ monophonic path P. Then it is clear that $S=V-\{v\}$ is a monophonic set of G so that $m(G) \leq n-1$, which is a contradiction. Thus we have the following theorem.
Theorem 2.8 For a connected graph G of order $n, m(G)=n$ if and only if $G=K$.

The same result is not true for open monophonic number of a graph. It is to be noted that for $G=C_{4}, o m(G)=$ 4.

Theorem 2.9 If G is a non-trivial connected graph with no extreme vertices, then $\operatorname{om}(G) \geq 3$.
Proof. First, we observe that if G is a non-trivial connected graph having no extreme vertices, then the order of G is at least 4. Let S be an open monophonic set of G. If $u \in S$, then there exist vertices v and w such that u is an internal vertex of a $v-w$ monophonic path. Hence it follows that $|S| \geq 3$, and so om $(G) \geq 3$.
Theorem 2.10 For any cycle $G=C_{n}(n \geq 4)$,
$\operatorname{om}(G)= \begin{cases}3 & \text { if } n \geq 6 \\ 4 & \text { if } n=4,5 .\end{cases}$
Proof. Let the cycle $G=C_{n}(n \geq 6)$ be $C_{n}: V_{1}, \mathrm{~V}_{2}, \ldots, V_{n}, \mathrm{~V}_{1}$. Since G has no extreme vertices, it follows from Theorem 2.9 that $\operatorname{om}(G) \geq 3$. It is clear that $S=\left\{v_{1}, v_{3}, v_{5}\right\}$ is a minimum open monophonic set of G so that $\operatorname{om}(G)=3$. For $G=C_{4}$, it is clear that no 3-element subset of vertices is an open monophonic set of G. Hence it follows that $\operatorname{om}(G)=4$. For $G=C_{5}$, it is easily seen that no 3-element subset of vertices is an open monophonic set of G. Since $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is an open monophonic set of G, it follows that $\operatorname{om}(G)=4$. Thus the proof of the theorem is complete.
Remark 2.11 Theorem 2.10 shows that the bound in Theorem 2.9 is sharp.

Theorem 2.12 For the complete bipartite graph $G=K_{r, s}(2 \leq r \leq s)$, $o m(G)=4$.
Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{\mathrm{r}}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{\mathrm{s}}\right\}$ be the partite sets of G. Since G contains no extreme vertices, by Theorem $2.9 \mathrm{om}(G) \geq 3$. It is easily verified that no 3-element subset of vertices of G is an open monophonic set of G so that $o m(G) \geq 4$. Let S be any set of four vertices formed by taking two vertices from each of U and W. Then it is clear that S is an open monophonic set of G so that $o m(G)=4$.
Theorem 2.13 If G is a connected graph having $k \geq 2$ extreme vertices, and if $m(G)=k$, then om $(G)=k$.
Proof. Let S be the set of all extreme vertices of G. Since $m(G)$ $=k$, by Theorem 1.1, S is the unique minimum monophonic set of G. We prove that S is also an open monophonic set of G. If v $\notin S$, then, since S is a monophonic set, v is an internal vertex of an $x-y$ monophonic path for some $x, y \in S$. Therefore, S is an open monophonic set of G and so by Theorem $2.4 \mathrm{om}(G)=k$.
Theorem 2.14 For any wheel $W_{n}=K_{1}+C_{n-1}(n \geq 5)$,

$$
o m\left(W_{n}\right)= \begin{cases}3 & \text { if } n \geq 7 \\ 4 & \text { if } n=5,6\end{cases}
$$

Proof. Let $W_{n}=K_{1}+C_{n-1}(n \geq 5)$. Let $n \geq 7$. Since W_{n} has no extreme vertices, by Theorem 2.9, om $(G) \geq 3$. Since the set $S=$ $\left\{v_{1}, v_{3}, v_{5}\right\}$ is an open monophonic set of W_{n}, it follows that $\operatorname{om}\left(W_{n}\right)=3$. Let $W_{n}=K_{1}+C_{n-1}(n=5,6)$. Since W_{n} has no extreme vertices, by Theorem $2.9, o m\left(W_{\mathrm{n}}\right) \geq 3$. It is easily verified that no 3-element subset of vertices of W_{n} is an open monophonic set. Since $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is an open monophonic set of W_{n}, it follows that $\operatorname{om}\left(W_{\mathrm{n}}\right)=4$. Thus the proof is complete.

Theorem 2.15 If G is a connected graph with a cutvertex v, then every open monophonic set of G contains at least one vertex from each component of $G-v$.
Proof. Let v be a cut vertex of G. Let $G_{1}, G_{2}, \ldots, G_{k}(k \geq 2)$ be the components of $G-v$. Let S be an open monophonic set of G. Suppose that S contains no vertex from a component say G_{i} $(1 \leq i \leq k)$. Let u be a vertex of G i. Then by Theorem $2.5 u$ is not an extreme vertex of G. Since S is an open monophonic set of G, there exist vertices $x, y \in S$ such that u lies on a $x-y$ monophonic path $P: x=u_{0}, u_{1}, u_{2}, \ldots, u, \ldots, u_{l}=y$ with $u \neq x, y$. Then the $x-u$ subpath of P and the $u-y$ subpath of P both contain v. Hence it follows that P is not a path, which is a contradiction. Thus every open monophonic set of G contains at least one vertex from the component of $G-v$.
Corollary 2.16 Let G be a connected graph with cutvertices and let S be an open monophonic set of G. Then every branch of G contains an element of S.
Theorem 2.17 Let G be a connected graph with cutvertices and S a minimum open monophonic set of G. Then no cut vertex of G belongs to S.
Proof. Let S be any minimum open monophonic set of G. Let v $\in S$. We prove that v is not a cutvertex of G. Suppose that v is a cutvertex of G. Let $G_{1}, G_{2}, \ldots, G_{k}(k \geq 2)$ be the components of $G-v$. Then v is adjacent to at least one vertex of each G_{i} for $1 \leq$ $i \leq k$. Let $S^{\prime}=S-\{v\}$. We show that S^{\prime} is an open monophonic set of G. Let x be a vertex of G. If x is an extreme vertex of G, then $x \neq v$ and so by Theorem 2.5, $\mathrm{x} \in S^{\prime}$. Suppose that x is not an extreme vertex of G. Since S is an open monophonic set of G, x lies as an internal vertex of a $u-w$ monophonic path P for some $u, w \in S$. If $v \neq u$, w then obviously $u, w \in S^{\prime}$ and S^{\prime} is an open monophonic set of G. If $v=u$, then $v \neq \mathrm{w}$. Assume without loss of generality that $w \in G i$. By Theorem 2.15, S^{\prime} contains a vertex w^{\prime} from $G_{i}(2 \leq i \leq k)$. Then $w^{\prime} \neq v$. Let P^{\prime} be a $v-w^{\prime}$ monophonic path. Then, since v is a cutvertex of G, it follows that the path P followed by the path P^{\prime} is a $w-w^{\prime}$ monophonic path of G. Hence x is an internal vertex of a $w-w^{\prime}$ monophonic path with $w, w^{\prime} \in S^{\prime}$. Thus S^{\prime} is an open monophonic set of G with $\left|S^{\prime}\right|<|S|$. This is a contradiction to S a minimum open monophonic set. Thus no cutvertex of G belongs to S.
Remark 2.18 If $\operatorname{om}(G)=n$ for a connected graph G of order n, it follows from Theorem 2.17 that G is a block.

We leave the following problem as an open question.
Problem 2.19 Characterize the class of graphs G of order n for which $\operatorname{om}(G)=n$.
Corollary 2.20 For any tree T, the open monophonic number $\operatorname{om}(T)$ equals the number of endvertices of T. In fact, the set of all endvertices of T is the unique minimum open monophonic set of T.
Proof. This follows from Theorems 2.5 and 2.17.
Theorem 2.21 For every pair k, n of integers with $2 \leq k \leq n$, there exists a connected graph G of order n such that om $(G)=k$.
Proof. For $k=n$, let $G=K_{n}$. Then the result follows from Cor-
ollary 2.6. For $2 \leq k<n$, let G be a tree of order n with k endvertices. Then the result follows from the Corollary 2.20.
Theorem 2.22 For a connected graph G of order $n \geq 2, \operatorname{om}(G)=2$ if and only if there exist exactly two extreme vertices u and v such that every vertex of G is on a monophonic $u-v$ path.
Proof. Let $\operatorname{om}(G)=2$. Let $S=\{u, v\}$ be a minimum open monophonic set of G. Then, necessarily both u and v are extreme vertices of G. Hence every vertex of G lies as an internal vertex of a $u-v$ monophonic path. The converse is obvious.
Theorem 2.23. Let G be a non-complete connected graph of order n. If G contains a vertex of degree $n-1$, then om $(G) \leq n-1$.
Proof. Let x be a vertex of degree $n-1$. Since G is not complete, x is not an extreme vertex of G. Let $S=\mathrm{V}(G)-\{x\}$. We show that S is an open monophonic set of G. Since x is not an extreme vertex of G, there exist non-adjacent neighbors y and z of x. Hence it follows that x lies as an internal vertex of a $y-z$ monophonic path for some $y, z \in S$. Now, let $u \in S$. If u is an extreme vertex of G, then there is nothing to prove. Suppose that u is not an extreme vertex of G. If $\langle N(u)\rangle$ is complete in $\langle S\rangle$, then $\langle N(u) \cup\{x\}\rangle$ is complete in G. Hence u is an extreme vertex of G, which is a contradiction. Therefore, $\langle N(u)\rangle$ is not complete in $\langle S\rangle$. This means that there exist non-adjacent neighbors v, w of u such that $v, w \in S$. Hence it follows that u lies as an internal vertex of a $v-w$ monophonic path so that S is an open monophonic set of G. Thus $o m(G) \leq|S|=n-1$.

For the wheel $W_{5}=K_{1}+C_{4}, \operatorname{om}\left(W_{5}\right)=4$ so that the bound in Theorem 2.23 is sharp. For the graph G in Fig. 2, $S=\left\{v_{1}, v_{3}\right\}$ is a minimum open monophonic set of $G \operatorname{om}(G)=2<4$, so that the bound in Theorem 2.23 can be strict.

Fig. 2: A noncomplete graph G with a vertex of $\operatorname{deg} 4$ and $o m(G)<4$
Theorem 2.24 For any tree T of order $n \geq 3, \operatorname{om}(T)=n-1$ if and only if T is the star $K_{1, n-1}$.
Proof. This follows from Corollary 2.20, and also from the fact that a tree with exactly one cutvertex is a star.

In the following theorem, we construct a class of graphs G of order n for which $\operatorname{om}(G)=n-1$.
Theorem 2.25 If $G_{i}(1 \leq i \leq k)$ are vertex disjoint connected graphs of order $n_{i} \geq 2, k \geq 2$ and om $\left(G_{i}\right)=n_{i}$, then om $\left(K_{1}+\cup G_{i}\right)=\sum n_{i}$.
Proof. Let $G=K_{1}+\cup G_{i}$. Let $K_{1}=\{v\}$. By Theorem 2.23, $\operatorname{om}(G) \leq \sum n_{i}$. Suppose that $\operatorname{om}(G)<\sum n_{i}$. Let S be a minimum open monophonic set of G. Then $|S| \leq \sum n_{i}-1$. Since v is a cutvertex of G, by Theorem $2.17 v \notin S$. Let $S_{i}=S \cap V\left(G_{i}\right)(1 \leq i$ $\leq k) . S_{i} \neq \phi$, by Theorem 2.15. Also $S=S_{1} \cup S_{2} \ldots \cup S_{k}, S_{i} \cap S_{j}$
$=\phi, i \neq j$. Since $|S| \leq \sum n_{i}-1$, it follows that $\left|S_{i}\right| \leq n_{i}-1$ for some $i(1 \leq i \leq k)$. Hence S_{i} is a proper subset of vertices of G_{i}. We show that S_{i} is an open monophonic set of Gi. Let x be an extreme vertex of G_{i}. Then it is clear that x is also an extreme vertex of G so that by Theorem 2.5, $x \in S$. Hence $x \in S_{i}$. If x is not an extreme vertex of G_{i}, then since S is an open monophonic set of G, x lies as an internal vertex of a $y-z$ monophonic path P with $y, z \in S$. Now, since P is $y-z$ monophonic path and since v is a cutvertex of G, it follows that both $y, z \in$ S_{i}. Thus S_{i} is an open monophonic set of G_{i} so that $\operatorname{om}\left(G_{i}\right) \leq$ $\left|S_{i}\right| \leq n_{i}-1$, which is a contradiction to om $\left(G_{i}\right)=n_{i}$.

Now, we leave the following problem as an open question.
Problem 2.26 Characterize the class of graphs G of order n for which $\operatorname{om}(G)=n-1$.

For every connected graph G, rad $G \leq \operatorname{diam} G \leq 2 \mathrm{rad} G$. Ostrand [6] showed that every two positive integers a and b with $a \leq b \leq 2 a$ are realizable as the radius and diameter, respectively, of some connected graph. Now, Ostrand's theorem can be extended so that the open monophonic number can also be prescribed, when $a<b \leq 2 a$.
Theorem 2.27 For positive integers r, d and $l \geq 2$ with $r<d \leq 2 r$, there exists a connected graph G with rad $G=r$, diam $G=d$ and $o m(G)=l$.
Proof. When $r=1$, let $G=k_{1, l}$. Then $d=2$ and by Corollary $2.20 \mathrm{om}(G)=l$. For $r \geq 2$, we construct a graph G with the desired properties as follows:

Let $C_{2 r}: v_{1}, v_{2}, \ldots, v_{2 r}, v_{1}$ be a cycle of order $2 r$ and let P_{d-r+1} : $u_{0}, u_{1}, u_{2}, \ldots, u_{d-r}$ be a path of order $d-r+1$. Let H be a graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying v_{1} in $C_{2 r}$ and u_{0} in P_{d-r+1}. Let G be the graph obtained from H by adding $l-2$ new vertices $w_{1}, w_{2}, \ldots, w_{l-2}$ to H and joining each vertex $w_{i}(1 \leq i \leq l$ $-2)$ with the vertex u_{d-r-1} and also joining the edge $v_{r} v_{r+2}$. The graph G is show in Fig. 3. Then $\operatorname{rad} G=r$ and $\operatorname{diam} G=d$.

Fig. 3: A graph G with radius r, diameter d and $o m(G)=I$.
The graph G has $l-1$ endvertices. Let $S=\left\{w_{1}, w_{2}, \ldots, w_{l-2}, u_{d-r}\right.$, $\left.v_{r+1}\right\}$. Then S is the set of all extreme vertices of G and it is clear that S is an open monophonic set of G so that by Theorem 2.5,
$\operatorname{om}(G)=l$.

3. The open monophonic number and diameter of a graph

For a graph G of order n and diameter d, it is proved that
$g(G) \leq n-d+1$. Since $m(G) \leq g(G)$, it follows that $m(G) \leq n-d+1$. However, in the case of $\operatorname{om}(G)$, it happens that $\operatorname{om}(G)<n-d+$ $1, \operatorname{om}(G)=n-d+1$ and $\operatorname{om}(G)>n-d+1$. For the graph G given in Fig. 4 it is clear that $\left\{v_{3}, v_{6}\right\}$ is a minimum open monophonic set of G and so $o m(G)=2$. Since $n=6$ and $d=4$, we have $n-d+1=3$ and so $o m(G)<n-d+1$. For the Wheel $W_{5}=$ $K_{1}+C_{4}$, by Theorem 2.14 , so $o m\left(W_{5}\right)=4$. Since $n=5$ and $d=2$, we have $n-d+1=4$ and so $o m\left(W_{5}\right)=n-d+1$. Also for the graph G given in Fig. 5, it is clear that $\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right\}$ is a minimum open monophonic set of G and so $o m(G)=6$. Since n $=8$ and $d=4$ we have $n-d+\frac{\pi}{n}=5$ and so $o m(G)>n-d+1$.

Fig. 4: A graph with $o m(G)<n-d+1$.

Fig. 5: A graph with $o m(G)>n-d+1$.
Theorem 3.1 For every non-trivial tree T of $\operatorname{order} n, \operatorname{om}(T)=n-d$ +1 if and only if T is a caterpillar.
Proof. Let T be a non-trivial tree. Let $d(u, v)=d$ and $P: u=v_{0}$, $v_{1}, v_{2}, \ldots, v_{d-1}, v_{d}=v$ be a diametral path. Let k be the number of endvertices of T and l the number of internal vertices of T other than $v_{1}, v_{2}, \ldots, v_{d-1}$. Then $n=d-1+k+l$. By Theorem $2.5, o m(T)=k$ and so $o m(T)=n-d+1$ if and only if $l=0$, if and only if all the internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.

Now, we prove the following realization result.
Theorem 3.2 If n, d and k are integers such that $2 \leq d<n, 2 \leq k<$ n and $n-d-k+1 \geq 0$, then there exists a graph G of order n, diameter d and $\operatorname{om}(G)=k$.
Proof. Let $P_{d}: u_{0}, u_{1}, u_{2}, \ldots, u_{\mathrm{d}}$ be a path of length d. First, let $n-d-k+1 \geq 1$. Let $K_{n-d-k+1}$ be the complete graph with vertex set $\left\{w_{1}, w_{2}, \ldots, w_{n-d-k+1}\right\}$. Let H be the graph obtained from P_{d} and $\quad K_{n-d-k+1}$ by joining each vertex of $K_{n-d-k+1}$ to u_{i} for $i=0,1,2$. Let G be the graph obtained from H by adding $k-2$ new vertices $v_{1}, v_{2}, \ldots, v_{k-2}$ to H and by joining each vertex $v_{i}(1 \leq i \leq k-$ 2) with the vertex u_{1} of P_{d}. The graph G is shown in Fig. 6 and G has order n and diameter d. Let $S=\left\{u_{0}, u_{d}, v_{1}, v_{2}, \ldots, v_{k-2}\right\}$ be the set of extreme vertices of G. Then it is clear that S is an open monophonic set of G and so by Theorem $2.5 \mathrm{om}(G)=k$.

Fig. 6: A graph G with order n, diameter d and $o m(G)=k$.
For $n-d-k+1=0$, let G be the tree given in Fig. 7. Then it is clear that G has diameter d, order $d+k-1=n$ and $\operatorname{om}(G)=k$.

Fig. 7: A graph with order $\boldsymbol{n}=\boldsymbol{d}+\boldsymbol{k}-1$, diameter \boldsymbol{d} and $o m(G)=\boldsymbol{k}$.

4. Addition of a pendant edge and open monophonic number

A fundamental question in graph theory concerns how the value of a parameter is affected by making a small change in the graph. In this section, we study how the open monophonic number of a graph is affected by the addition of a pendant edge.
Theorem 4.1 If G^{\prime} is a graph obtained by adding a pendant edge to a connected graph G, then $\operatorname{om}(G)-2 \leq o m\left(G^{\prime}\right) \leq o m(G)+1$.
Proof. Let G^{\prime} be the graph obtained from G by adding a pendant edge $u v$, where u is not a vertex of G and v is a vertex of G. Let S^{\prime} be a minimum open monophonic set of G^{\prime}. Then $o m\left(G^{\prime}\right)=\left|S^{\prime}\right|$. Since u is an endvertex of G^{\prime}, by Theorem 2.5, $u \in S^{\prime}$. Also since v is a cutvertex of G^{\prime}, by Theorem 2.17, $v \notin S^{\prime}$. We consider two cases.
Case 1. v is an extreme vertex of G.
Let $S=\left(S^{\prime}-\{u\}\right) \cup\{v\}$. Then it is clear that $|S|=\left|S^{\prime}\right|=$ $\operatorname{om}\left(G^{\prime}\right)$. We show that S is an open monophonic set of G. Let x be a vertex of G. Suppose that x is an extreme vertex of G. If x $=v$, then $x \in S$. If $x \neq v$, then x is also an extreme vertex of G^{\prime} and so $x \in S^{\prime}$. Since $x \neq u, v$ we have $x \in S$. Now, if x is not an extreme vertex of G, then $x \neq v$. Since S^{\prime} is an open monophonic set of G^{\prime}, x lies as an internal vertex of a $y-z$ monophonic path with $y, z \in S^{\prime}$. If $u \neq y, z$, then it is clear that x is an internal vertex of a $y-z$ monophonic path with $y, z \in S$. If $u=y$ or $u=z$, say $y=u$, then since $x \neq v$ it is easily verified that x is an
internal vertex of a $v-z$ monophonic path with $v, z \in S$. Thus S is an open monophonic set of G so that $o m(G) \leq|S|=\left|S^{\prime}\right|$ $=o m\left(G^{\prime}\right)$.
Case 2. v is not an extreme vertex of G.
Since v is not an extreme vertex of G, there exists vertices $v^{\prime}, v^{\prime \prime}$ such that v^{\prime} and $v^{\prime \prime}$ are not adjacent in G, and v is adjacent to both v^{\prime} and $v^{\prime \prime}$. Hence v lies in the $v^{\prime}-v^{\prime \prime}$ geodesic of length 2 so that v lies on a $v^{\prime}-v^{\prime \prime}$ monophonic path in G. Let $S=\left(S^{\prime}-\right.$ $\{u\}) \cup\left\{v, v^{\prime}, v^{\prime \prime}\right\}$. Then $|S| \leq\left|S^{\prime}\right|+2$. We show that S is an open monophonic set of G. Let x be a vertex of G such that $x \neq$ v. If x is an extreme vertex of G, then it clear that x is also an extreme vertex of G^{\prime}. Hence $x \in S^{\prime}$. Also, since $x \neq u$, it follows that $x \in S$. Now, assume that x is not an extreme vertex of G. Since $x \neq u$, it is clear that x is also not an extreme vertex of G^{\prime} and so x lies as internal vertex of a $y-z$ monophonic path. Then, proceeding as in Case 1, we see that S is an open monophonic set of G. Hence $\operatorname{om}(G) \leq|S| \leq\left|S^{\prime}\right|+2=o m\left(G^{\prime}\right)+2$. Combining both cases, we see that $\operatorname{om}(G)-2 \leq o m\left(G^{\prime}\right)$.

Now, we look for the upper bound of $\operatorname{om}\left(G^{\prime}\right)$. Let S be a minimum open monophonic set of G. Since u is an extreme vertex of G^{\prime}, it is clear that $S \cup\{u\}$ is an is an open monophonic set of G^{\prime} and so $o m\left(G^{\prime}\right) \leq|S \cup\{u\}|=o m(G)+1$. Thus $\operatorname{om}(G)-2$ $\leq o m\left(G^{\prime}\right) \leq o m(G)+1$.
Remark 4.2 The bounds in Theorem 4.1 are sharp.

Fig. 8: A graph with $o m(G)=4$.

Fig. 9: A graph with om($\left.\mathbf{G}^{\prime}\right)=\boldsymbol{o m}(\mathbf{G})+1$
For the graph G given in Fig. 8, it is easily seen that no 3element subset of vertices of G is an open monophonic set of G. Now, the set $S=\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$ is an open monophonic set of G so that $\operatorname{om}(G)=4$. Let G^{\prime} be the graph in Fig. 9 obtained from G by adding the pendant edge $v_{5} v_{8}$. Then $S^{\prime}=\left\{v_{7}, v_{8}\right\}$ is a minimum open monophonic set of G^{\prime} so that $\operatorname{om}\left(G^{\prime}\right)=2$. Thus $o m(G)-2=o m\left(G^{\prime}\right)$. For any path G of length at least 2 , we have $\operatorname{om}(G)=2$. Let G^{\prime} be the tree obtained from G by adding the pendant edge at a cutvertex of G. The $\operatorname{om}\left(G^{\prime}\right)=3$. Thus $\operatorname{om}\left(G^{\prime}\right)$ $=o m(G)+1$.
Theorem 4.3 If G^{\prime} is a graph obtained from a connected graph G by
adding a pendant edge $u v$, where u is not a vertex of G and v is a vertex of G and if om $\left(G^{\prime}\right)=o m(G)+1$, then v does not belong to any minimum open monophonic set of G.
Proof. Assume that v belongs to some minimum open monophonic set S of G. Let $S^{\prime}=(S-\{v\}) \cup\{u\}$. Then $|S|=\left|S^{\prime}\right|$. We show that S^{\prime} is an open monophonic set of G^{\prime}. Let x be a vertex in G^{\prime}. If x is an extreme vertex of G^{\prime}, then $x \neq v$. If $x=u$, then by definition of $S^{\prime}, x \in S^{\prime}$. If $x \neq u$, then x is an extreme vertex of G and so $x \in S$. Hence it follows that $x \in S^{\prime}$. Suppose that x is not an extreme vertex of G^{\prime}. Then $x \neq u$. It is clear that x is a vertex of G. If $x=v$, then x lies as an internal vertex of a $y-u$ monophonic path for any $y \in S$, with $y \neq x$. If $x \neq v$, then since S is an open monophonic set of G, x is an internal vertex of a y $-z$ monophonic path with $y, z \in S$. If $v \neq y, z$, then $y, z \in S^{\prime}$. If $v=y$ or $v=z$, say $y=v$, then x lies as an internal vertex of a $v-$ z monophonic path with $v, z \in \mathrm{~S}$. Since v is a cut vertex of G^{\prime}, it is clear that x is an internal vertex of a $u-z$ monophonic path with $u, z \in \mathrm{~S}^{\prime}$. Hence S^{\prime} is an open monophonic set of G^{\prime} so that $o m\left(G^{\prime}\right) \leq\left|S^{\prime}\right|=|S|=o m(G)$, which is a contradiction.

Remark 4.4 The converse of Theorem 4.3 need not be true. For the graph G given in Fig. 10, it is easily seen that $S=\left\{v_{1}, v_{3}, v_{5}\right.$, $\left.v_{9}\right\}$ is a minimum open monophonic set so that $\operatorname{om}(G)=4$. Let G^{\prime} be the graph given in Fig. 11, obtained from G by adding the pendant edge $v_{4} v_{10}$. Then $S^{\prime}=\left\{v_{1}, v_{9}, v_{10}\right\}$ is the unique minimum open monophonic set of G^{\prime} so that $\operatorname{om}\left(G^{\prime}\right)=3$. Thus $o m\left(G^{\prime}\right) \neq \operatorname{om}(G)+1$. It is easily seen that no 4-element subset of vertices of G containing v_{4} is an open monophonic set of G.

Fig. 10: A graph with $o m(G)=4$.

Fig. 11: A graph with om($\left.\mathbf{G}^{\prime}\right) \neq 0 m(G)+1$
We leave the following problem as an open question.
Problem 4.3 Characteristize the class of graphs G for which $\operatorname{om}\left(G^{\prime}\right)=\operatorname{om}(G)+1$, where G^{\prime} is the graph obtained from G by adding a pendant edge of G.

Conclusion

This paper introduces a new parameter known as open monophonic number of a graph. The open problems given in this paper are challenging. Further, this concept can be extended to conditional parameters.

ACKNOWLEDGMENT

The authors wish to thank the referees for their useful suggestions.

References

[1] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley, Redwood city, CA, 1990.
[2] G. Chartrand, E. M. Palmer and P. Zhang, The geodetic number of a graph: A survey, Congr. Numer., 156 (2002), 37-58.
[3] G. Chartrand, F. Harary, H. C. Swart and P. Zhang, Geodomination in graphs, Bulletin of the ICA, 31(2001), 51-59.
[4] F. Harary, Graph theory, Addison-Wesley, 1969.
[5] R. Muntean and P. Zhang, On geodomination in graphs, Congr. Numer., 143(2000), 161-174.
[6] P. A. Ostrand, Graph with specified radius and diameter, Discrete Math., 4(1973), 71-75.
[7] A. P. Santhakumaran and T. Kumari Latha, On the open geodetic number of a graph, SCIENTIA series A: Mathematical Sciences, Vol. 20(2010), 131-142.

Author Address-
Department of Mathematics
Hindustan University
Chennai-603 103
India.

