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The Open Monophonic Number of a Graph 
A.P. Santhakumaran, M. Mahendran 

 

Abstract— For a connected graph G of order n, a subset S of vertices of G is a monophonic set of G if each vertex v in G lies on a x-y monophonic 
path for some elements x and y in S.  The minimum cardinality of a monophonic set of G is defined as the monophonic number of G, denoted by m(G).  
A monophonic set of cardinality m(G) is called a m–set of G.  A set S of vertices of a connected graph G is an open monophonic set of G if for each ver-
tex v in G, either v is an extreme vertex of G and v ∈ S, or v is an internal vertex of a x-y monophonic path for some x, y ∈ S.  An open monophonic set 
of minimum cardinality is a minimum open monophonic set and this cardinality is the open monophonic number, om(G).  The open monophonic number 
of certain standard graphs are determined.  For positive integers r, d and l ≥ 2 with r ≤ d ≤ 2r, there exists a connected graph of radius r, diameter d and 
open monophonic number l.  It is proved that for a tree T of order n and diameter d, om(T) = n – d + 1 if and only if T is a caterpillar.  Also for integers n, 
d and k with 2 ≤ d < n, 2 ≤ k < n and n – d – k + 1 ≥ 0, there exists a graph G of order n, diameter d and open monophonic number k.  It is proved that 
om(G) – 2 ≤ om(G′) ≤ om(G) + 1, where G′ is the graph obtained from G by adding a pendant edge to G.  Further, it is proved that if om(G′) = om(G) + 1, 
then v does not belong to any minimum open monophonic set of G, where G′ is a graph obtained from G by adding a pendant  edge uv with v a vertex of 
G and u  not a vertex of G. 
Keywords— Distance, geodesic, geodetic number, open geodetic number, monophonic number, open monophonic number. 

——————————      —————————— 

1 INTRODUCTION                                                                     
Y a graph G = (V, E) we mean a finite, undirected connect-
ed graph without loops or multiple edges.  The order and 
size of G are denoted by n and m, respectively.  For basic 

graph theoretic terminology we refer to Harary [4]. The dis-
tance d(u,v) between two vertices u and v in a connected graph 
G is the length of a shortest u-v path in G.  An u-v path of 
length d(u,v) is called an u-v geodesic.  It is known that this dis-
tance is a metric on the vertex set V(G).  For any vertex v of G, 
the eccentricity e(v) of v is the distance between v and a vertex 
farthest from v.  The minimum eccentricity among the vertices 
of G is the radius, rad G and the maximum eccentricity is its 
diameter, diam G of G.  The neighborhood of a vertex v is the set 
N(v) consisting of all vertices which are adjacent with v.  The 
vertex v is an extreme vertex of G if the subgraph induced by its 
neighbors is complete.  For a cutvertex v in a connected graph 
G and a component H of G – v, the subgraph H and the vertex 
v together with all edges joining v and V(H) is called a branch 
of G at v.  A geodetic set of G is a set S ⊆ V(G) such that every 
vertex of G is contained in a geodesic joining some pair of ver-
tices in S.  The geodetic number g(G) of G is the cardinality of a 
minimum geodetic set.  A vertex x is said to lie on a u-v geodesic 
P if x is a vertex of P and x is called an internal vertex of P if x ≠ 
u, v.  A set S of vertices of a connected graph G is an open geo-
detic set of G if for each vertex v in G, either v is an extreme 
vertex of G and v ∈ S, or  v is an internal vertex of a x-y geo-
desic for some x, y ∈ S.  An open geodetic set of minimum 
cardinality is a minimum open geodetic set and this cardinali-
ty is the open geodetic number og(G).  It is clear that every open 
geodetic set is a geodetic set so that g(G) ≤ og(G).  The geodetic 
number of a graph was introduced and studied in [1, 2].  The 
open geodetic number of a graph was introduced and studied 
in [3, 5, 7] in the name open geodomination in graphs. A chord 
of a path u1, u2, … , un in G is an edge uiuj with j ≥ i + 2.  For 
two vertices u and v in a connected graph G, a u-v path is 
called a monophonic path if it contains no chords.  A monophonic 
set of G is a set S ⊆ V(G) such that every vertex of G is con-
tained in a monophonic path joining some pair of vertices in S.  
The monophonic number m(G) of G is the cardinality of a mini-
mum monophonic set.  

 

 
      

G 
Fig. 1.1: A graph with monophonic number 3. 

 
For the graph G given in Fig. 1.1, the set S = {v1, v3, v6} is a 
minimum monophonic set so that m(G) = 3. 
 Since every extreme vertex v is either an initial vertex or a 
terminal vertex of a path containing v, it follows that every 
monophonic set S of graph G contains all its extreme vertices.  
Hence we have the following theorem. 
Theorem 1.1  Every extreme vertex of a connected graph G belongs                       
to each monophonic set of G.  In particular, if the set S of all extreme 
vertices of G is a monophonic set of G, then S is the unique mini-
mum monophonic set of G. 

2 OPEN MONOPHONIC NUMBER OF A GRAPH 
2.1 Definition 
A  set S of vertices in a connected graph G is an open monophon-
ic set if for each vertex v in G, either v is an extreme vertex of G 
and v ∈ S, or v is an internal vertex of an x-y monophonic path 
for some x, y ∈ S.  An open monophonic set of minimum car-
dinality is a minimum open monophonic set and this cardinality 
is the open monophonic number om(G) of G. An open monophon-
ic set of cardinality om(G) is called an om-set of G. 
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Fig. 1: A graph with open monophonic number 4. 
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For the graph G is Fig. 1, the set S = {v1, v3} is a monophonic 
set of G so that m(G) = 2. It is easily checked that neither a 2-
element subset nor a 3-element subset of vertices is an open 
monophonic set of G. Since S = {v1, v2, v3, v4} is an open mon-
ophonic set of G, it follows that S is a minimum open mono-
phonic set and so om(G) = 4. Also S1 = {v1, v2, v3, v7}, S2 = {v1, 
v3, v4, v5}, S3 = {v1, v3, v4, v6} are minimum open monophonic 
sets. Thus, there can be more than one minimum open mono-
phonic set for a connected graph. This example also shows 
that the monophonic number and open monophonic number 
of a graph are different. 

It clear that an open monophonic set needs at least 
two vertices and so om(G) ≥ 2 Also the set of all vertices of G is 
an open monophonic set of G so that om(G) ≤ n. Hence we 
have the following theorem. 
Theorem 2.2 For any connected graph G of order n, 2 ≤ om(G) ≤ n. 
Remark 2.3 We observe that the bounds in Theorem 2.2 are 
sharp. For the complete graph Kn(n ≥ 2), om(Kn) = n. The set of 
two end vertices of a path Pn(n ≥ 2) is its unique minimum 
open monophonic set so that om(Pn) = 2. Thus the complete 
graph Kn has largest possible open monophonic number n and 
that non-trivial paths have the smallest open monophonic 
number 2. 

We observe that every open monophonic set of a 
graph G is a monophonic set so that m(G) ≤ om(G). This com-
bined with Theorem 2.2 gives the following result. 
Theorem 2.4 For a connected graph G, 2 ≤ m(G) ≤ om(G) ≤ n. 

Since every open monophonic set of a graph G is also 
a monophonic set of a graph G, the next theorem follows from 
Theorem 1.1. 
Theorem 2.5 Every open monophonic set of a graph G contains its 
extreme vertices. Also, if the set S of all extreme vertices of G is an 
open monophonic set, then S is the unique minimum open mono-
phonic set of G. 
Corollary 2.6 For the complete graph Kn(n ≥ 2), om(Kn) = n. 
Remark 2.7 If om(G) = n for a connected graph G of order n, 
then it  need not be true that G is complete. It is clear that for 
the cycle G = C4, om(G) = 4. 

Now, Corollary 2.6 leads us to ask the question 
whether m(G) = n for a connected graph G of order n implies G 
= Kn. If G is not a complete graph, then there exist two vertices 
x and y such that x and y are not adjacent. Hence there is a x-y 
geodesic P of length at least 2 so that P is also a x - y mono-
phonic path of  length at least 2. Let v be an internal vertex of 
the x-y monophonic path P. Then it is clear that S = V − {v} is a 
monophonic set of G so that m(G) ≤ n − 1, which is a contradic-
tion. Thus we have the following theorem. 
Theorem 2.8 For a connected graph G of order n, m(G) = n if and 
only if G = Kn.  

The  same  result  is  not  true  for open  monophonic  
number of  a graph. It  is to be noted that for G = C4, om(G) = 
4. 

Theorem 2.9 If  G is a non-trivial connected graph with no extreme 
vertices, then om(G) ≥ 3. 
Proof. First, we observe that if G is a non-trivial connected 
graph having no extreme vertices, then the order of G is at 
least 4.  Let S be an open monophonic set of  G. If u ∈ S, then 
there exist vertices v and w such that u is an internal vertex of 
a v-w monophonic path. Hence it follows that |S| ≥ 3, and so 
om(G) ≥ 3. 
Theorem 2.10 For any cycle G = Cn (n ≥ 4),

 3 if 6
( )

4 if = 4,5.
≥

= 


n
om G

n
 

Proof. Let the cycle G = Cn(n ≥ 6) be Cn : v1, v2, . . . , vn, v1. 
Since G has no extreme vertices, it follows from Theorem 2.9 
that om(G) ≥ 3. It is clear that S = {v1, v3, v5} is a minimum open 
monophonic set  of  G so that om(G) = 3. For G = C4, it is clear  
that no 3-element subset of vertices is an open monophonic set 
of G. Hence it follows that om(G) = 4. For G = C5, it is easily 
seen that no 3-element subset of vertices is an open mono-
phonic set of  G. Since S = {v1, v2, v3, v4} is an open monophon-
ic set of G, it follows that om(G) = 4. Thus the proof of the theo-
rem is complete. 
Remark 2.11 Theorem 2.10 shows that the bound in Theorem 
2.9 is sharp. 
Theorem 2.12 For the complete bipartite graph G = Kr,s(2 ≤ r ≤ s), 
om(G) = 4. 
Proof. Let U = {u1, u2, …, ur} and W = {w1, w2, …, ws} be the 
partite sets of G.  Since G contains no extreme vertices, by 
Theorem 2.9 om(G) ≥ 3.  It is easily verified that no 3-element 
subset of vertices of G is an open monophonic set of G so that 
om(G) ≥ 4.  Let S be any set of four vertices formed by taking 
two vertices from each of U and W.  Then it is clear that S is an 
open monophonic set of G so that om(G) = 4. 
Theorem 2.13 If G is a connected graph having k ≥ 2 extreme verti-
ces, and if m(G) = k, then om(G) = k.  
Proof.  Let S be the set of all extreme vertices of G.  Since m(G) 
= k, by Theorem 1.1, S is the unique minimum monophonic set 
of G.  We prove that S is also an open monophonic set of G. If v 
∉ S, then, since S is a monophonic set, v is an internal vertex of 
an x-y monophonic path for some x, y ∈ S.  Therefore, S is an 
open monophonic set of G and so by Theorem 2.4 om(G) = k.  
Theorem 2.14 For any wheel Wn = K1 + Cn – 1 (n ≥ 5),  

3 if 7
( )

4 if =5,6.
≥

= 


n

n
om W

n
 

Proof.  Let Wn = K1 + Cn-1 (n ≥ 5).  Let n ≥ 7.  Since Wn has no 
extreme vertices, by Theorem 2.9, om(G) ≥ 3.  Since the set S = 
{v1, v3, v5} is an open monophonic set of Wn, it follows that 
om(Wn) = 3.  Let Wn = K1 + Cn-1 (n = 5, 6). Since Wn has no ex-
treme vertices, by Theorem 2.9, om(Wn) ≥ 3.  It is easily verified 
that no 3-element subset of vertices of Wn is an open mono-
phonic set. Since S = {v1, v2, v3, v4} is an open monophonic set 
of Wn, it follows that om(Wn) = 4. Thus the proof is complete.
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Theorem 2.15 If G is a connected graph with a cutvertex v, then 
every open monophonic set of G contains at least one vertex from 
each component of G – v. 
Proof.  Let v be a cut vertex of G.  Let G1, G2, …, Gk (k ≥ 2) be 
the components of G – v.  Let S be an open monophonic set of 
G.  Suppose that S contains no vertex from a component say Gi 
(1 ≤ i ≤ k).  Let u be a vertex of G i.  Then by Theorem 2.5 u is 
not an extreme vertex of G.  Since S is an open monophonic set 
of G, there exist vertices x, y ∈ S such that u lies on a x – y 
monophonic path P : x = u0, u1, u2, …, u, …, ul = y with u ≠ x, y. 
Then the x – u subpath of P and the u – y subpath of P both 
contain v.  Hence it follows that P is not a path, which is a con-
tradiction. Thus every open monophonic set of G contains at 
least one vertex from the component of G – v.       
Corollary 2.16 Let G be a connected graph with cutvertices 
and let S be an open monophonic set of G.  Then every branch 
of G contains an element of S. 
Theorem 2.17 Let G be a connected graph with cutvertices and S a 
minimum open monophonic set of G.  Then no cut vertex of G be-
longs to S. 
Proof. Let S be any minimum open monophonic set of G. Let v 
∈S. We prove that v is not a cutvertex of G. Suppose that v is a 
cutvertex of G. Let G1, G2, . . . ,Gk(k ≥ 2) be the components of 
G − v. Then v is adjacent to at least one vertex of each Gi for 1 ≤ 
i ≤ k. Let S′ = S − {v}. We show that S′ is an open monophonic 
set of G. Let x be a vertex of G. If x is an extreme vertex of G, 
then x ≠ v and so by Theorem 2.5, x ∈S′. Suppose that x is not 
an extreme vertex of G. Since S is an open monophonic set of 
G, x lies as an internal vertex of a u - w monophonic path P for 
some u, w ∈ S. If v ≠ u, w then obviously u, w ∈ S′ and S′ is an 
open monophonic set of G. If v = u, then v ≠ w. Assume with-
out  loss of generality that w∈G i. By Theorem 2.15, S′ contains 
a vertex w′ from Gi(2 ≤ i ≤ k). Then w′ ≠ v. Let P′ be a v - w′ 
monophonic path. Then, since v is a cutvertex of G, it follows 
that the path P followed by the path P′ is a w - w′ monophonic 
path of G. Hence x is an internal vertex of a w - w′ monophonic 
path with w, w′ ∈S′. Thus S′ is an open monophonic set of G 
with |S′| < |S|. This is a contradiction to S a minimum open 
monophonic set. Thus no cutvertex of G belongs to S.  
Remark 2.18 If om(G) = n for a connected graph G of order n,  it 
follows from Theorem 2.17 that G is a block. 
 We leave the following problem as an open question. 
Problem 2.19 Characterize the class of graphs G of order n for 
which om(G) = n. 
Corollary 2.20 For any tree T, the open monophonic number 
om(T) equals the number of endvertices of T.  In fact, the set of 
all endvertices of T is the unique minimum open monophonic 
set of T. 
Proof.  This follows from Theorems 2.5 and 2.17.  
Theorem 2.21  For every pair k, n of integers with 2 ≤ k ≤ n, there 
exists a connected graph G of order n such that om (G) = k. 
Proof.  For k = n, let G = Kn.  Then the result follows from Cor-

ollary 2.6.  For 2 ≤ k < n, let G be a tree of order n with k 
endvertices.  Then the result follows from the Corollary 2.20. 
Theorem 2.22  For a connected graph G of order n ≥ 2, om(G) = 2 if 
and only if there exist exactly two extreme vertices u and v such that 
every vertex of G is on a monophonic u – v path. 
Proof.  Let om(G) = 2.  Let S = {u, v} be a minimum open mono-
phonic set of G.  Then, necessarily both u and v are extreme 
vertices of G.  Hence every vertex of G lies as an internal vertex 
of a u – v monophonic path.  The converse is obvious.  
Theorem 2.23.  Let G be a non-complete connected graph of order n.  
If G contains a vertex of degree n – 1, then om(G) ≤ n – 1. 
Proof.  Let x be a vertex of degree n – 1. Since G is not com-
plete, x is not an extreme vertex of G.  Let S = V(G) – {x}.  We 
show that S is an open monophonic set of G.  Since x is not an 
extreme vertex of G, there exist non-adjacent neighbors y and z 
of x.  Hence it follows that x lies as an internal vertex of a y – z 
monophonic path for some y, z ∈ S.  Now, let u ∈ S. If u is an 
extreme vertex of G, then there is nothing to prove. Suppose 
that u is not an extreme vertex of G.  If 〈N(u)〉 is complete in 
〈S〉, then 〈N(u) ∪ {x}〉 is complete in G.  Hence u is an extreme 
vertex of G, which is a contradiction.  Therefore, 〈N(u)〉 is not 
complete in 〈S〉.  This means that there exist non-adjacent 
neighbors v, w of u such that v, w ∈ S.  Hence it follows that u 
lies as an internal vertex of a v – w monophonic path so that S 
is an open monophonic set of G.  Thus om(G) ≤ |S| = n – 1.  
 For the wheel W5 = K1 + C4, om(W5) = 4 so that the bound 
in Theorem 2.23 is sharp.  For the graph G in Fig. 2, S = {v1, v3} 
is a minimum open monophonic set of G, om(G) = 2 < 4, so that 
the bound in Theorem 2.23 can be strict. 
 

 

 

 

 

 
G 

Fig. 2: A noncomplete graph G with a vertex of deg 4 and om(G) < 4  
 
Theorem 2.24 For any tree T of order n ≥ 3, om(T) = n – 1 if and 
only if T is the star K1,n–1. 
Proof.  This follows from Corollary 2.20, and also from the fact 
that a tree with exactly one cutvertex is a star.  
 In the following theorem, we construct a class of graphs G 
of order n for which om(G) = n – 1. 
Theorem 2.25  If Gi (1 ≤ i ≤ k) are vertex disjoint connected graphs 
of order ni ≥ 2, k ≥ 2 and om(Gi) = ni, then om(K1 + ∪Gi) = ∑ ni. 
Proof.  Let G = K1 + ∪ Gi. Let K1 = {v}.  By Theorem 2.23, 
om(G) ≤ ∑ ni. Suppose that om(G) < ∑ni.  Let S be a minimum 
open monophonic set of G.  Then |S|  ≤ ∑ni – 1. Since v is a 
cutvertex of G, by Theorem 2.17 v ∉ S.  Let Si  = S ∩ V(Gi) (1 ≤ i 
≤ k). Si ≠ φ, by Theorem  2.15. Also S = S1  ∪ S2 … ∪ Sk, Si ∩ Sj  
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= φ, i ≠ j.  Since | S | ≤ ∑ni – 1, it follows that | Si | ≤ ni – 1 for 
some i (1 ≤ i ≤ k). Hence Si is a proper subset of vertices of Gi.  
We show that Si is an open monophonic set of Gi.  Let x be an 
extreme vertex of Gi.  Then it is clear that x is also an extreme 
vertex of G so that by Theorem 2.5, x ∈ S. Hence x∈ Si.  If x is 
not an extreme vertex of Gi, then since S is an open mono-
phonic set of G, x lies as an internal vertex of a y – z mono-
phonic path P with y, z ∈ S.  Now, since P is y – z monophonic 
path and since v is a cutvertex of G, it follows that both y, z ∈ 
Si.  Thus Si is an open monophonic set of Gi so that om(Gi) ≤ 
|Si|  ≤ ni – 1, which is a contradiction to om (Gi) = ni. 
 Now, we leave the following problem as an open 
question. 
Problem 2.26 Characterize the class of graphs G of order n for 
which om(G) = n – 1. 
 For every connected graph G, rad G ≤ diam G ≤ 2 rad G.  
Ostrand [6] showed that every two positive integers a and b 
with a ≤ b ≤ 2a are realizable as the radius and diameter, re-
spectively, of some connected graph.  Now, Ostrand’s theorem 
can be extended so that the open monophonic number can 
also be prescribed, when a < b ≤ 2a. 
Theorem 2.27 For positive integers r, d and l ≥ 2 with r < d ≤ 2r, 
there exists a connected graph G with rad G = r, diam G = d and 
om(G) = l. 
Proof.  When r = 1, let G = k1, l.  Then d = 2 and by Corollary 
2.20 om(G) = l.  For r ≥ 2, we construct a graph G with the de-
sired properties as follows: 
       Let C2r : v1, v2, …, v2r, v1 be a cycle of order 2r and let Pd–r+1: 
u0, u1, u2, …, ud–r be a path of order  d – r + 1.  Let H be a graph 
obtained from C2r and Pd–r+1 by identifying v1 in C2r and u0 in   
Pd–r+1.  Let G be the graph obtained from H by adding l – 2 new 
vertices w1, w2, …, wl–2 to H and joining each vertex wi (1 ≤ i ≤ l 
– 2) with the vertex ud–r–1 and also joining the edge vr vr+2 .  The 
graph G is show in Fig. 3.  Then rad G = r and diam G = d.  
 
 
  
 
 
 
 
 

G 
Fig. 3: A graph G with radius r, diameter d and om(G) = l.  

 
The graph G has l – 1 endvertices.  Let S = {w1, w2, …, wl–2, ud–r, 
vr+1}.  Then S is the set of all extreme vertices of G and it is 
clear that S is an open monophonic set of G so that by Theo-
rem 2.5,  
om(G) = l. 
 
3. The open monophonic number and diameter  
    of a graph 

For a graph G of order n and diameter d, it is proved that 

g(G) ≤ n–d +1.  Since m(G) ≤ g(G), it follows that m(G) ≤ n–d + 1.  
However, in the case of om(G), it happens that om(G) < n – d + 
1, om(G) = n – d + 1 and om(G) > n – d + 1.  For the graph G giv-
en in Fig. 4 it is clear that {v3, v6} is a minimum open mono-
phonic set of G and so om(G) = 2.  Since n = 6 and d = 4, we 
have n – d + 1 = 3 and so om(G) < n – d + 1.  For the Wheel W5 = 
K1 + C4, by Theorem 2.14, so om(W5) = 4.  Since n = 5 and d = 2, 
we have n – d + 1 = 4 and so om(W5) = n – d + 1.  Also for the 
graph G given in Fig. 5, it is clear that {v1, v2, v3, v6, v7, v8} is a 
minimum open monophonic set of G and so om(G) = 6. Since n 
= 8 and d = 4 we have n – d + 1 = 5 and so om(G) > n – d + 1. 

 

 

 

 

 
         G 

Fig. 4: A graph with om(G) < n-d+1. 
 
 

 

 

 
G 

Fig. 5: A graph with om(G) > n-d+1. 
 

Theorem 3.1 For every non-trivial tree T of order n, om(T) = n – d 
+ 1 if and only if T is a caterpillar. 
Proof.  Let T be a non-trivial tree.  Let d(u, v) = d and P : u = v0, 
v1, v2, …, vd–1, vd = v be a diametral path. Let k be the number 
of endvertices of T and l the number of internal vertices of T 
other than v1, v2, …, vd-1.  Then n = d – 1 + k + l.  By Theorem 
2.5, om(T) = k and so om(T) = n – d + 1 if and only if l = 0, if and 
only if all the internal vertices of T lie on the diametral path P, 
if and only if T is a caterpillar. 
 Now, we prove the following realization result.  
Theorem 3.2  If  n, d and k are integers such that 2 ≤ d < n, 2 ≤ k < 
n and n – d – k + 1 ≥ 0, then there exists a graph G of order n, diame-
ter d and om(G) = k.  
Proof.  Let Pd : u0, u1, u2, …, ud be a path of length d.  First, let 
n – d – k + 1 ≥ 1.  Let Kn–d–k+1 be the complete graph with vertex 
set {w1, w2, …, wn–d–k+1}.  Let H be the graph obtained from Pd  
and    Kn–d–k+1 by joining each vertex of Kn–d–k+1 to ui for i = 0, 1, 2.  
Let G be the graph obtained from H by  adding k – 2 new ver-
tices v1, v2, …, vk–2 to H and by joining each vertex vi (1 ≤ i ≤ k – 
2) with the vertex u1 of Pd. The graph G is shown in Fig. 6 and 
G has order n and diameter d. Let S = {u0, ud, v1, v2, … ,vk–2} be 
the set of extreme  vertices of G.  Then it is clear that S is an 
open monophonic set of G and so by Theorem 2.5 om(G) = k.  
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Fig. 6: A graph G with order n, diameter d and om(G) = k. 
 

    For n – d – k + 1 = 0, let G be the tree given in Fig. 7. Then it is 
clear that G has diameter d, order d + k – 1 = n and om(G) = k. 
 

 

 

 

 
G 

Fig. 7: A graph with order n = d + k - 1, diameter d and om(G) = k. 
 

4. Addition of a pendant edge and open          
    monophonic number 
 A fundamental question in graph theory concerns how the 
value of a parameter is affected by making a small change in 
the graph.  In this section, we study how the open monophon-
ic number of a graph is affected by the addition of a pendant 
edge.  
Theorem 4.1  If G′ is a graph obtained by adding a pendant edge to 
a connected graph G, then om(G) – 2 ≤ om(G′) ≤ om(G) + 1. 
Proof.  Let G′ be the graph obtained from G by adding a    
pendant edge uv, where u is not a vertex of G and v is a vertex 
of G.  Let S′ be a minimum open monophonic set of G′.  Then 
om(G′) = | S ′|.  Since u is an endvertex of G′, by Theorem 2.5,  
u ∈ S′.  Also since v is a cutvertex of G′, by Theorem 2.17,         
v ∉ S′.  We consider two cases. 
Case 1.  v is an extreme vertex of G. 
        Let S = (S′ – {u}) ∪ {v}.  Then it is clear that | S | = | S′ | = 
om(G′).  We show that S is an open monophonic set of G.  Let x 
be a vertex of G.  Suppose that x is an extreme vertex of G.  If x 
= v, then x ∈ S.  If x ≠ v, then x is also an extreme vertex of G′ 
and so x ∈ S′.  Since x ≠ u, v we have x ∈ S.  Now, if x is not an 
extreme vertex of G, then x ≠ v.  Since S′ is an open monophon-
ic set of G′, x lies as an internal vertex of a y – z monophonic 
path with y, z ∈ S′. If u ≠ y, z, then it is clear that x is an inter-
nal vertex of a y – z monophonic path with y, z ∈ S.  If u = y or 
u = z, say y = u, then since x ≠ v it is easily verified that x is an 

internal vertex of a v – z monophonic path with v, z ∈ S.  Thus 
S is an open monophonic set of G so that om(G) ≤ | S | = | S′ | 
= om(G′). 
Case 2.  v is not an extreme vertex of G. 
    Since v is not an extreme vertex of G, there exists vertices 
v′, v″ such that v′ and v″ are not adjacent in G, and v is adjacent 
to both v′ and v″. Hence v lies in the v′- v″ geodesic of length 2 
so that v lies on a v′ - v″ monophonic path in G.  Let S = (S′ - 
{u}) ∪ {v, v′, v″}.  Then | S | ≤ | S′ | + 2.  We show that S is an 
open monophonic set of G.  Let x be a vertex of G such that x ≠ 
v.  If x is an extreme vertex of G, then it clear that x is also an 
extreme vertex of G′.  Hence x ∈ S′. Also, since x ≠ u, it follows 
that x ∈ S.  Now, assume that x is not an extreme vertex of G.  
Since x ≠ u, it is clear that x is also not an extreme vertex of G′ 
and so x lies as internal vertex of a y – z monophonic path.  
Then, proceeding as in Case 1, we see that S is an open mono-
phonic set of G.  Hence om(G) ≤ | S | ≤ | S′ |  + 2 = om(G′)  + 2.  
Combining both cases, we see that om(G) – 2 ≤ om(G′). 
       Now, we look for the upper bound of  om(G′).  Let S be 
a minimum open monophonic set of G.  Since u is an extreme 
vertex of G′, it is clear that S ∪ {u} is an is an open monophonic 
set of G′ and so om(G′) ≤ |S ∪ {u}| = om (G) + 1. Thus om(G) – 2 
≤ om(G′) ≤ om(G) + 1.  
Remark 4.2   The bounds in Theorem 4.1 are sharp. 
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Fig. 8: A graph with om(G) = 4. 

 

 

 

 
 

G’ 
Fig. 9: A graph with om(G′) = om(G)+1 

 
     For the graph G given in Fig. 8, it is easily seen that no 3-
element subset of vertices of G is an open monophonic set of 
G. Now, the set S = {v4, v5, v6, v7} is an open monophonic set of 
G so that om(G) = 4.  Let G′ be the graph in Fig. 9 obtained 
from G by adding the pendant edge v5v8.  Then S′ = {v7, v8} is a 
minimum open monophonic set of G′ so that om(G′) = 2.  Thus 
om(G) – 2 = om(G′). For any path G of length at least 2, we have 
om(G) = 2.  Let G′ be the tree obtained from G by adding the 
pendant edge at a cutvertex of G.  The om(G′) = 3.  Thus om(G′) 
= om(G) + 1. 
Theorem 4.3  If G′ is a graph obtained from a connected graph G by 
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adding a pendant edge uv, where u is not a vertex of G and v is a 
vertex of G and if om(G′ ) = om(G) + 1, then v does not belong to any 
minimum open monophonic set of G.   
Proof.  Assume that v belongs to some minimum open mono-
phonic set S of G.  Let S′ = (S – {v}) ∪ {u}.  Then |S| = |S′|.  We 
show that S′ is an open monophonic set of G′.  Let x be a ver-
tex in G′. If x is an extreme vertex of G′, then x ≠ v. If x = u, then 
by definition of S′, x ∈ S′. If x ≠ u, then x is an extreme vertex 
of G and so x ∈ S.  Hence it follows that x ∈ S′.  Suppose that x 
is not an extreme vertex of G′.  Then x ≠ u. It is clear that x is a 
vertex of G.  If x = v, then x lies as an internal vertex of a y – u 
monophonic path for any y ∈ S, with y ≠ x.  If x ≠ v, then since 
S is an open monophonic set of G, x is an internal vertex of  a y 
– z monophonic path with y, z ∈ S.  If v ≠ y, z, then y, z ∈ S′.  If 
v = y or v = z, say y = v, then x lies as an internal vertex of a v – 
z monophonic path with v, z ∈ S.  Since v is a cut vertex of G′, 
it is clear that x is an internal vertex of a u – z monophonic 
path with u, z ∈ S′.  Hence S′ is an open monophonic set of G′ 
so that om(G′) ≤ |S′| = |S| = om(G), which is a contradiction. 
 
Remark 4.4 The converse of Theorem 4.3 need not be true. For 
the graph G given in Fig. 10, it is easily seen that S = {v1, v3, v5, 
v9} is a minimum open monophonic set so that om(G) = 4. Let 
G′ be the graph given in Fig. 11, obtained from G by adding 
the pendant edge v4v10. Then S′ = {v1, v9, v10} is the unique 
minimum open monophonic set of G′ so that om(G′) = 3. Thus 
om(G′) ≠ om(G) + 1. It is easily seen that no 4-element subset of 
vertices of G containing v4 is an open monophonic set of G. 
 
 
 

 
 

 
G 

Fig. 10: A graph with om(G) = 4. 
 

 
 

 
 
 
 

 
G′ 

Fig. 11: A graph with om(G′) ≠ om(G) + 1 
 We leave the following problem as an open question. 
Problem 4.3 Characteristize the class of graphs G for which 
om(G′) = om(G) + 1, where G′ is the graph obtained from G by 
adding a pendant edge of G. 

CONCLUSION 
This paper introduces a new parameter known as open mono-
phonic number of a graph. The open problems given in this 
paper are challenging. Further, this concept can be extended to 
conditional parameters. 
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